Convergent sequences of composition operators
نویسندگان
چکیده
منابع مشابه
Convergent sequences of composition operators
Composition operators Cφ on the Hilbert Hardy space H 2 over the unit disk are considered. We investigate when convergence of sequences {φn} of symbols, (i.e., of analytic selfmaps of the unit disk) towards a given symbol φ, implies the convergence of the induced composition operators, Cφn → Cφ . If the composition operators Cφn are Hilbert–Schmidt operators, we prove that convergence in the Hi...
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملm-Ary Hypervector Space: Convergent Sequences and Bundle Subsets.
In this paper, we have generalized the definition of vector space by considering the group as a canonical $m$-ary hypergroup, the field as a krasner $(m,n)$-hyperfield and considering the multiplication structure of a vector by a scalar as hyperstructure. Also we will be consider a normed $m$-ary hypervector space and introduce the concept of convergence of sequence on $m$-ary hypernormed space...
متن کاملLacunary I-Convergent Sequences
In this article we introduce the concepts of lacunary Iconvergent sequences. We investigate its different properties like solid, symmetric, convergence free etc.
متن کاملGroups without convergent sequences
We investigate the question: which compact abelian groups have a dense (pseudocompact) subgroup without convergent sequences?
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2005
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2004.12.028